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ABSTRACT
RAPL (Running Average Power Limit) is a hardware feature intro-
duced by Intel to facilitate power management. Even though RAPL
and its supporting software interfaces can benefit power manage-
ment significantly, they are unfortunately designed without taking
certain security issues into careful consideration. In this paper, we
demonstrate that information leaked through RAPL-induced side
channels can be exploited to mount realistic attacks. Specifically,
we have constructed a new RAPL-based covert channel using a
single AVX instruction, which can exfiltrate data across different
boundaries (e.g., those established by containers in software or even
CPUs in hardware); and, we have investigated the first RAPL-based
website fingerprinting technique that can identify visited webpages
with a high accuracy (up to 99% in the case of the regular network
using a browser like Chrome or Safari, and up to 81% in the case
of the anonymity network using Tor). These two studies form a
preliminary examination into RAPL-imposed security implications.
In addition, we discuss some possible countermeasures.
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1 INTRODUCTION
The power consumption of a computer system has been consid-
ered increasingly critical over the past few decades. To facilitate
power management, Intel has introduced a hardware feature named
Running Average Power Limit (RAPL) since its Sandy Bridge mi-
croarchitecture [30]. RAPL enables accurate energy consumption
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measurement and provides fine-grained power capping capability.
Thus, by monitoring and reacting to the power consumption of
computing, RAPL has been widely used in data centers to improve
energy efficiency and enforce power budget compliance [13, 54, 73].

Several model-specific registers (MSRs) in Intel processors are
dedicated to RAPL manipulation [24]. To make the use of RAPL
easier, since the kernel version 3.14, Linux has added a power cap-
ping framework, which exposes the functionality of RAPL to the
user space through a sysfs interface called powercap [61]. Although
unprivileged users cannot change the RAPL settings through this
interface, they are allowed to read all the files belonging to it, in-
cluding the ones that report the energy in 𝜇J consumed by different
parts of the system. While such an interface does not exist in other
operating systems, unprivileged users may still be able to read
RAPL by invoking specific system calls like on Mac OS.

Even though RAPL and its supporting software abstraction can
benefit power management significantly, they are designed without
considering certain underlying security issues such as information
leakage. Because energy is a fundamental resource needed for any
computational activity, its consumption measurements inevitably
carry some information about the activity. The question is whether
the energy consumption information exposed by RAPL can be
exploited to help or mount realistic attacks? If so, how?

Surprisingly, only little prior work has studied such questions [41,
48]. Given the fact that there are still many blanks left, this paper
makes an attempt to fill in some of them by presenting two possible
security implications imposed by RAPL. Specifically, the studies
conducted in this paper demonstrate that we can leverage RAPL
to construct covert communication channels and track website
visits. These studies and their results support the already drawn
conclusion that software/hardware designs, useful but oblivious
to security risks like information leakage, are still common in a
system. The main contributions of this paper include:

• We investigate the levels of memory power consumption
under different intensive DRAM access scenarios. Based on
the investigation results, we show the feasibility of exploiting
RAPL to construct covert channels.
• We evaluate the proposed covert channel on several plat-
forms to demonstrate its effectiveness on crossing isolation
at different logical levels such as containers in software and
CPUs in hardware. We further evaluate its robustness to
continuous cache eviction noise.
• We demonstrate the possibilities of using RAPL readings
to fingerprint websites. Unlike the previous work on using
power traces for website fingerprinting which requires ex-
ternal instrumentation and/or hardware modification, the
RAPL-based technique is purely in software and thus poses
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more practical threats to many popular systems (e.g., Apple
Macs).
• We evaluate the RAPL-based website fingerprinting tech-
nique using popular browsers like Chrome, Safari, and Tor
on Linux and Mac OS. The results show that this finger-
printing method is highly effective – in terms of the regular
network, up to 99% accuracy can be achieved; in terms of the
anonymity network, up to 81% accuracy can be achieved.

The rest of this paper is organized as: Section 2 describes the
necessary background; Section 3 presents how to exploit RAPL to
construct a covert channel; Section 4 investigates if RAPL can be
exploited to achieve website fingerprinting; Section 5 discusses the
possible mitigation removing RAPL-induced side channels; Sec-
tion 6 gives the related work; and Section 7 concludes this paper
and states some future work.

2 BACKGROUND
In this section, we present necessary background information on
Intel RAPL and on how to access this hardware feature. We empha-
size the powercap interface in Linux and the diagnostic system call
in Mac OS. In addition, we discuss what has been studied in prior
work on its security implications.

2.1 Intel Running Average Power Limit
Since Sandy Bridge, Intel has introduced RAPL to facilitate power
management [4, 53]. Because RAPL samples energy consumption at
a fine granularity and at a high frequency, it enables us to monitor
the consumed energy very accurately. More importantly, RAPL can
adjust and optimize performance to satisfy the given power budget
constraints.

RAPL is split into several power domains, and each of them
has its own capabilities of measuring the consumed energy in the
domain and specifying the power limit of the domain. The currently
supported power domains are as follows [24, 30]:
• Package domain. This domainmanages the entire CPU socket,
which includes all the processor cores as well as the uncore
components (e.g., the last-level cache, integrated GPU, and
memory controller).
• Power plane 0 domain (PP0). This domain is in charge of all
the processor cores on the socket, namely, it is a sub-domain
of the package domain.
• Power plane 1 domain (PP1). This domain is in charge of the
integrated GPU on the socket, namely, it is also a sub-domain
of the package domain.
• DRAM domain. This domain is associated with the DRAM
memory attached to the integrated memory controller. (Al-
though it is treated as a sub-domain of the package domain
in the Linux powercap, the energy consumption it manages
however cannot be governed by the package domain.)
• Platform domain (PSys). This domain deals with the whole
CPU package, memory, and other devices that are powered
directly by the integrated power delivery mechanism.

Given the hierarchical structure of the power domains (e.g., PP0 is a
sub-domain of the package), it is possible to manage a set of devices
together using the parent power domain, and if more fine-grained
control is needed, it can be applied through the sub-domains.

Notice that not every processor supports all these power domains.
For instance, server processors usually do not have an integrated
GPU, and thus they do not have a valid PP1 domain. Another ex-
ample is that the PSys domain is not introduced until Skylake;
moreover, unlike the other four power domains, to be valid, the
PSys domain needs additional support from the platform hardware
and BIOS, which does not exist in many systems equipped with
Skylake or its successors; and hence we do not consider the PSys
domain in the following of this paper. Table 1 lists several relatively
new Intel microarchitectures and marks which domains exist in
their mainstream consumer-grade/server-grade processors.

Table 1: RAPL power domains supported in some recent In-
tel microarchitectures (consumer-grade/server-grade).

Microarchitecture Package PP0 PP1 DRAM
Haswell Y/Y Y/N Y/N Y/Y
Broadwell Y/Y Y/N Y/N Y/Y
Skylake Y/Y Y/Y Y/N Y/Y

Kaby Lake Y/Y Y/Y Y/N Y/Y

Several MSRs are associated with each power domain. One of
such MSRs is an “energy status” register which reports the total
amount of energy consumed since the last time when this register
is cleared. This status MSR is updated approximately every 1 ms.
(For Skylake and newer processors, the PP0 energy status MSR
is updated much faster, e.g., at the level of tens of microseconds.)
Another important one of the associated MSRs is a “power limit”
register which specifies a limit on the power consumption as an
average over a time window. The units of energy, power, and time
may be different in different processors. For example, the energy
unit in Sandy Bridge processors is of 15.3 𝜇J, and that in Haswell
processors is of 61 𝜇J. These units can be obtained from a read-only
“power unit” MSR for the whole RAPL.

Aside from directly using privileged rdmsr and wrmsr instruc-
tions, there are several other ways to access RAPL under Linux.
The first approach is to read/write RAPL-associated MSRs through
the /dev/cpu/<cpu#>/msr files provided by the Linuxmsr driver, but
access to these files needs root privileges. The second approach is to
use the Linux perf_event interface to only obtain energy consump-
tion readings from RAPL, but it also needs intervention from the
root. The third approach is to leverage the Linux powercap interface,
which allows unprivileged users to directly read RAPL.

Under Mac OS, RAPL energy status MSRs can be accessed via
its diagnostic system call. The diagnostic system call has a specific
mode for inquiring the power statistics of the system backed by
RAPL. Thus, any unprivileged process can make this system call to
read RAPL. Note that there is no available interface on Windows
by default for accessing RAPL in the unprivileged manner.

2.2 Linux Power Capping Framework
Back in January 2014, the Linux kernel 3.13 release introduced a
new feature called the power capping framework. This framework
is designed around Intel RAPL and provides a consistent interface
in the sysfs named powercap. The path to the powercap interface
is /sys/class/powercap/intel-rapl/. To avoid cluttering, we use
<sys-rapl> to denote this path in the following. The files under the



powercap interface expose the functionality of RAPL to the user
space in a uniform way.

For each valid power domain, there are several files associated
with it under the powercap interface. Some of the files are for setting
average power consumption constraints over time windows, but
they can be written only by a privileged process. The other files
are read-only and for giving information, e.g., the domain name in
the name file, and reporting the current energy consumption in the
energy_uj file. The energy_uj file is updated about every 1 ms. By
default, all the files under the powercap interface are world-readable.

The files under the powercap interface are organized hierarchi-
cally to reflect the tree topology of the power domains. For ex-
ample, the files associated with the package domain are located
under <sys-rapl>/intel-rapl:0/, where 0 indicates the first CPU
socket, while the files belonging to the PP0 domain are located
under <sys-rapl>/intel-rapl:0/intel-rapl:0:0/, where the sub-
directory intel-rapl:0:0 signifies the first sub-domain. If there is
a second CPU socket that also has a processor, the files associated
with its package domain are under <sys-rapl>/intel-rapl:1/, and
so forth.

Gao et al. have found that many container-based platform-as-
a-service (PaaS) clouds allow the tenanted containers to pry the
underlying RAPL readings through their own powercap interface [9].
They exploited this fact to identify co-residence, and also mentioned
the possibility of utilizing it to construct covert channels. In this
paper, we advance their study by implementing an RAPL-based
covert channel and also present other RAPL exploitation venues.
Even though, prior to our work, Paiva et al. have created a covert
channel over RAPL [48], they simply used cache eviction and did
not consider eviction noise made by other tasks. Our covert channel
does not rely on evicting the cache hierarchy and performs well in
the presence of eviction noise.

2.3 OS X Diagnostic System Call
There are four classes of system calls exposed by the kernel of
Mac OS X, which are BSD, Mach, machine-dependent, and diagnos-
tic [36]. The BSD and Mach system calls are interfaces to the BSD
andMach kernel parts on which the kernel of Mac OS X is built. The
machine-dependent system calls are used for CPU specific features,
but many of them are undefined for the x86-64 architecture.

The diagnostic class consists of only one system call named
diagCall64() that is used exclusively for diagnostics. The mode
of diagCall64() is determined by its first argument, and one of
the modes (that is #17) is to access RAPL energy status MSRs. To
invoke diagCall64() to read energy status MSRs, the syscall
instruction is used1 with the system call number 0x4000001 in the
%rax register, the mode number 17 in the %rdi register, and the
address of an energy statistics data structure in the %rsi register.
After the system call, the energy statistics data structure will be
filled with the readings of the RAPLMSRs. An example of using this
system call to read RAPL can be found in the Firefox code base2.

1The diagCall64() has no wrapper function in the C library, so it cannot be invoked
directly. Moreover, the generic system call function syscall() raises SIGSYS (namely
bad system call) in terms of the system call number 0x4000001. However, directly using
the syscall instruction can successfully invoke the diagCall64().
2https://github.com/mozilla/gecko-dev/blob/master/tools/power/rapl.cpp

3 CONSTRUCTING COVERT CHANNELS
We have conducted two studies on RAPL-imposed security implica-
tions, and the first one is to create an RAPL-based covert channel
for data exfiltration. The key observation is that RAPL has a shared
nature and keeps track of the overall energy consumption in each
power domain. In other words, RAPL does not have the concept of
partitioning and it is influenced by any computation disregarding
the upper-level security boundaries. The other important property
is that RAPL is accessible to users by default in many environments.
As mentioned in Section 2, unprivileged native processes in a Linux
system can use the powercap interface to read RAPL, and so can
containers hosted by many public container-based PaaS clouds [9]3.
Even in the scenarios of conventional virtual machine (VM) based
infrastructure-as-a-service (IaaS) clouds, some providers do not pro-
hibit the guest VMs from inquiring the values in the RAPL energy
status MSRs. In this section, we specifically leverage the energy
consumption measurements in the DRAM domain to construct an
RAPL-based covert channel. Before proceeding with the details, we
discuss the rationale for focusing on the DRAM power domain.

First of all, as shown in Table. 1, the DRAM domain is widely
supported by mainstream Intel CPUs currently in use. Yet, more
importantly, the noise generated by the background computation
in the DRAM power domain can be much smaller than that in other
commonly existing domains, for which there are two main reasons:
(1) Compared to the package power domain, the DRAM domain is
specific to only the integrated memory controller, and in contrast
to the PP0 power domain, the DRAM domain is sensitive to only
load/store instructions; (2) Although other computational tasks
may be able to generate a large amount of memory accesses, the
existence of large, multi-level caches in a processor can substantially
reduce the DRAM access demands such that the signals created for
covert communication will not be easily buried.

3.1 Threat Model
Like all other covert channels [6, 12, 39, 42, 44, 45, 60, 69], this RAPL-
based covert channel requires a pair of colluding sender and receiver
running on the same computing platform but in different security
domains. However, unlike most of them, the sender and receiver do
not need to share the same memory pages [12], cache sets [39, 44,
45], memory buses [64, 69], or DRAM banks [50], and they do not
need to run on the same core [6, 60] either. In fact, on a platform that
has multiple sockets and is managed by a single operating system,
the sender and receiver can even run on different CPU packages.
Therefore, this new covert channel can circumvent the normally
used partitioning-based defenses against covert communications.

We assume the receiver has access to the RAPL readings in the
DRAM domain, but we do not require such access for the sender.
If they are two unprivileged native processes on a Linux server
or in two containers with their powercap interface exposed by the
underlying daemon [9], both of them can actually access RAPL.
Yet, they may be in an environment having the powercap interface
proactively disabled. Nevertheless, we find that the receiver may
still be able to read RAPL by other means. For example, at the time

3This way of access has already been eliminated by a few of the cloud service providers
investigated in [9]. Nevertheless, it has shown that default settings can render this
situation.



of this study, we discovered that an attacker-controlled receiver
VM on Amazon EC2 can use the Linux msr driver within the VM
to read RAPL energy status MSRs.

3.2 Covert Channel over RAPL
To understand how to encode information in the new covert chan-
nel, let us take a look at the effects of different memory access
patterns on the RAPL readings in the DRAM domain. In this ex-
periment, five memory access scenarios are considered: (I) We use
the mov instruction to access an array of size 256 KB sequentially;
(II) We use the mov instruction to access an array of size 512 MB
sequentially; (III) We first use the mov instruction to write a single
integer and then use the clflush instruction to remove its copy
from the cache; (IV) We use the vmovntdq instruction to write an
array of 16 256-bit integers sequentially; (V) We use the vmovntdq
instruction to write an array of 1024 256-bit integers sequentially.
In each scenario, the memory accesses are performed repeatedly
to facilitate our exploration. Fig. 1 lists the code snippets of these
scenarios.

// sizeof(long) is 8
// N is 32768 for (1)
// N is 67108864 for (2)
long a[N];
int i = 0;
while (1) {
++a[i];
i = (i + 1) % N;

}

// sizeof(int) is 4
int t;
while (1) {

asm volatile(
"mov %%eax, (%0) \n"
"clflush (%0) \n"
:: "r" (&t)

);
}

// sizeof(__m256i) is 32
// N is 16 for (4)
// N is 1024 for (5)
__m256i a[N], t;
int i = 0;
while (1) {
_mm256_stream_si256(a + i, t);
i = (i + 1) % N;

}
(I) & (II) (III) (IV) & (V)

Figure 1: Five memory access scenarios. In (I) and (II), mov is
generated by the compiler to access the array. In (IV) and (V),
the compiler intrinsic _mm256_stream_si256 corresponds to
vmovntdq.

We use the powercap interface to periodically read the the en-
ergy_uj file in the DRAM domain to acquire a sequence of energy
consumption values under each scenario. The energy_uj file con-
tains only one number that gives the consumed energy and is
updated nearly every 1 ms by the powercap. We read the value in
the file every 500 𝜇s. We take the difference between consecutive
samples to obtain a sense of power consumption. Since we read
the file about twice faster than it being updated, two consecutive
samples may have the same value, i.e., their difference is 0, in which
case we simply use the last non-zero difference as the current power
consumption. The experimental results on two platforms in terms
of the five memory access scenarios are shown in Fig. 2. One plat-
form is equipped with a Core i7-7700 (Kaby Lake) processor, and
the other platform is equipped with a Xeon D-1548 (Broadwell)
processor.

Since the size of the array in scenario (I) is only 256 KB, far
smaller than the size of the last-level cache (LLC), most of the mem-
ory accesses in that scenario cannot reach the DRAM. By contrast,
the array in scenario (II) is too large for the LLC, and therefore evic-
tion occurs constantly such that the DRAM is accessed regularly.
In scenario (III), the same memory block is repeatedly written and
then flushed out of the cache, so there are two DRAM accesses (i.e.,
one is due to write and the other one is due to write-back) in each
of its iterations. In scenarios (IV) and (V), the vmovntdq instruction
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Figure 2: Power consumption traces derived from RAPL
readings in the DRAM domain under different scenarios.

is used to bypass the cache to reach the DRAM. (vmovntdq is an
AVX instruction, and it stores packed integers using non-temporal
hint [24, 25].) In other words, the DRAM is (almost) always accessed
except for being in the first scenario. Accordingly, much less power
in the DRAM domain is consumed in the first scenario compared
to others, as shown in Fig. 2.

Although the underlying DRAM is accessed constantly in each
of the last four scenarios, different power consumption levels are
clearly observed in Fig. 2. As illustrated in the figure, the power
consumption is about 1.25 W, 1.25 W, 1.77 W, and 2.08 W respec-
tively in scenarios (II)–(V) on Core i7-7700, and is about 25.99 W,
21.50 W, 26.97 W, and 29.23 W respectively on Xeon D-1548. (The
points in Fig. 2 approximate how much energy in 𝜇J per millisecond
is used.) This shows that using the vmovntdq instruction to access
memory can consume notably high power in the DRAM domain.
This observation plays the fundamental role in constructing the
new covert channel.

An interesting phenomenon is that the power consumption in
the last two scenarios (IV) and (V) is different, although in both
cases the vmovntdq instruction has been used to access the DRAM
in the same pattern. The only difference is that 16 256-bit packed
integers are circularly written in scenario (IV) while the number
of 256-bit integers in scenario (V) is 1024. Fig. 3 further shows the
variation of power consumption on both Core i7-7700 and Xeon D-
1548 when varying the number of elements in the circularly written
array. We can observe that in general the power consumption is
higher if the array is larger but eventually plateaus.
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Figure 3: Power consumption (mean and standard deviation)
in circularly writing an array of 2𝑛 (2 ≤ 𝑛 ≤ 10) 256-bit inte-
gers using vmovntdq.

Our conjecture is that this phenomenon is due to write com-
bining and write collapsing performed during the corresponding
memory accesses. According to [24], the non-temporal hint (as in
vmovntdq) is implemented by using a write combining memory
type protocol that enforces a weakly-ordered memory consistency
model and has the correspondingmemory accesses bypass the cache



hierarchy. Although the cache hierarchy is not involved in non-
temporal memory accesses, CPU uses another component named
line fill buffers (LFB) to cache non-temporal stores [23]. Given these
weakly-ordered stores, two performance optimization techniques
are often applied to them in the LFB. One technique is called write
combining which is to assemble multiple stores writing the same
64-byte aligned memory block into one to improve DRAM access
efficiency (e.g., two stores writing two contiguous 256-bit integers
in a 64-byte aligned block can be merged into one LFB entry). The
other technique is called write collapsing that identifies stores writ-
ing the same location and may only commit the last store while
ignoring the rest. As the LFB is relatively small (e.g., 10 entries on
Haswell CPUs), if a large number of stores writing distinct locations
are in between two store writing the same location, these two stores
may not be collapsed. Therefore, when circularly writing a small
array, the effect of write combining and collapsing can result in less
amount of DRAM traffic than that when the array is sufficiently
large. Less DRAM traffic naturally signifies less power consumption
in the DRAM domain.

With respect to the effect of write combining, writing 2𝑛 con-
tiguous 256-bit integers in the non-temporal manner will ideally
occupy 𝑛 LFB entries. According to [56], there are 10 entries in the
LFB on pre-Skylake CPUs and 12 entries on post-Skylake CPUs.
In the aforementioned experiment, circularly writing 1024 256-bit
integers completely exhausts the LFB. We have observed that when
this happens, the power consumption in the DRAM domain is also
much higher than that incurred due to continuous cache eviction or
flushing on any other tested platforms. Moreover, we have noticed
that if circularly writing 2𝑛 256-bit integers where the ratio of 𝑛 to
the number of LFB entries is 0.5 ∼ 0.7, a large amount of DRAM
traffic is still created, and its power consumption is at least that
incurred by continuous cache eviction or flushing but much less
compared to that when the LFB is completely exhausted given the
effect of write collapsing.

// 𝑁 is the number of bits to send
//𝑀 controls how many writes are performed for sending a bit
//𝑇 is a predefined delay acting as a separator

1 𝑎 is an array of 1024 __m256i’s;
2 𝑑 is an array of 𝑁 bits to send;
3 for 𝑖 ← 0 to 𝑁 − 1 do
4 if 𝑑 [𝑖 ] = 0 then
5 for 𝑗 ← 0 to𝑀 − 1 do
6 use vmovntdq to write 𝑎 [ 𝑗 mod 14];
7 else
8 for 𝑗 ← 0 to𝑀 − 1 do
9 use vmovntdq to write 𝑎 [ 𝑗 mod 1024];

10 wait for T ms;

Figure 4: Sending procedure.

Based on the observation and discussion stated above, we con-
struct a covert channel that abuses RAPL readings in the DRAM
domain for communication. As illustrated in Fig. 4, the sender sim-
ply leverages two characteristic power consumption levels to en-
code information. To transmit bit ‘0’, the sender uses the vmovntdq
instruction to circularly write 14 256-bit integers for 𝑀 iterations

(lines 4–6), while to transmit bit ‘1’, the sender uses the vmovntdq
instruction to circularly write 1024 256-bit integers for𝑀 iterations
(lines 7–9). Notice that 14 contiguous 256-bit integers will ideally
take 7 LFB entries, which equals 0.7 and 0.58 of the number of
the LFB entries on pre- and post-Skylake CPUs respectively. To
determine 𝑀 , the sender at first measures loop time and adjusts
𝑀 to make the loop run for a predefined period of time (e.g., 30
ms). In addition, to deal with the absence of synchronization, 𝑇 ms
delay (e.g., 𝑇 = 5) is deliberately inserted (line 10), and this delay
creates a considerable power consumption drop after a bit is sent.
This drop serves as an effective bit separator on the receiver side.

// 𝑆 is the number of measured samples
// 𝑃0 and 𝑃1 are power consumption bounds delimiting ‘0’ and ’1’
// 𝐿𝑙 and 𝐿𝑢 are valid segment length lower and upper bounds

1 𝑒 is an array of 𝑆 uint64_t’s;
2 𝑝 is an array of 𝑆 uint64_t’s;
3 for 𝑖 ← 0 to 𝑆 − 1 do
4 read RAPL energy status in the DRAM domain into 𝑒 [𝑖 ];
5 wait for 500 𝜇s;

6 for 𝑖 ← 1 to 𝑆 − 1 do
7 𝑝 [𝑖 ] ← 𝑒 [𝑖 ] − 𝑒 [𝑖 − 1];
8 if 𝑝 [𝑖 ] = 0 then 𝑝 [𝑖 ] ← 𝑝 [𝑖 − 1];
9 process 𝑝 using a lowpass filter;

10 segment 𝑝 into {𝑝0, 𝑝1, . . . } based on abrupt changes;
11 foreach 𝑝𝑘 ∈ {𝑝0, 𝑝1, . . . } do
12 if 𝐿𝑙 ≤ |𝑝𝑘 | ≤ 𝐿𝑢 then
13 if 𝑃0 ≤ mean(𝑝𝑘 ) < 𝑃1 then ‘0’ is received;
14 else if 𝑃1 ≤ mean(𝑝𝑘 ) then ‘1’ is received;

Figure 5: Receiving procedure.

The receiver recovers transmitted information following the
procedure outlined in Fig. 5. It first records the RAPL energy status
in the DRAM power domain every 500 𝜇s for 𝑆 times (lines 3–5).
As mentioned above, this sampling can be achieved by several
means, e.g., the powercap interface if the receiver is an unprivileged
native process or the Linux msr driver if it is an attacker-controlled
receiver VM on Amazon EC2. After collecting enough samples, the
difference between consecutive samples is taken to obtain a sense
of power consumption. Since the sampling rate is twice faster than
the status updating rate, the difference may be 0, in which case we
just use the previous difference (lines 6–8).

The receiver then processes the obtained power consumption
trace using a lowpass filter (line 9). We just use a simple moving
average filter. After that, the receiver divides the power consump-
tion trace into segments based on abrupt changes (line 10). Several
offline change point detection approaches may be used [63], but we
simply locate the considerable drops due to the inserted delay. For
a segment, the receiver checks if it has at least 𝐿𝑙 points but at most
𝐿𝑢 points (line 12), where 𝐿𝑙 and 𝐿𝑢 depend on the predetermined
period of time for sending one bit. If the length is valid, the receiver
tries to recognize the bit by checking the mean of the segment
against two thresholds – 𝑃0 and 𝑃1 are the power consumption
thresholds representing the cases in which 14 and 1024 256-bit
integers are circularly written respectively (lines 13–14).

Note that several improvements may be made to this covert
channel protocol. For example, we can leverage more advanced



segmentation and recognition algorithms in the receiver. Since
optimization is not the primary focus of this paper, we will not
further discuss those possibilities but leave them to the future.

3.3 Evaluation
We evaluate the performance of this covert channel on three plat-
forms that are summarized in Table 2. For the evaluations, we use
Docker to establish effective isolation, i.e., the sender and the re-
ceiver run in separate Docker containers. The Docker environment
has been updated to the latest (version 19.03), and all the contain-
ers are official images pulled from the Docker Hub. The container
images for the sender and receiver may be different. We use this
setup to simulate the PaaS cloud situation studied in [9].

Table 2: Platforms used for covert channel evaluation.

Platform CPU (Installed #) Memory Host OS Docker Images†
A Core i7-7700 (1) 4×8 GB DDR4-2400 Ubuntu 18.04 debian/ubuntu
B Xeon D-1548 (1) 4×16 GB DDR4-2400 Ubuntu 16.04 centos/amazonlinux
C Xeon Gold 6130 (2) 12×16 GB DDR4-2666 CentOS 7 ubuntu/fedora

†The images are for sender/receiver respectively, and are pulled directly from the Docker Hub.

We utilize a pseudo-random number generator to create a piece
of data having 1,000 bits for transmitting. The bandwidth of the
covert channel is mainly determined by how long each bit-sending
loop in the sender takes and how much delay needs to be inserted
between the bit-sending loops. Recall that the delay is added for
the synchronization purpose by generating a considerable power
consumption drop after each bit is sent. We find that the delay
should be more than 3 ms for this purpose, and we choose to use 5
ms as the delay in the following.

We change the bit-sending loop time and obtain the bit rate
and error rate in the corresponding case. Given the bit-sending
loop time 𝑋 , the bit rate 𝑏 is simply derived by 𝑏 = 1000

𝑋+5 bps. Start-
ing from 𝑋 being 30 ms, we reduce 𝑋 by 5 ms each time until
𝑋 becomes 5 ms. We evaluate the error rate with respect to the
Levenshtein edit distance between the sent data and the received
bits. The Levenshtein edit distance is the minimum number of edits
(insertions, deletions, or substitution) required to change one string
into another string. The evaluation results are shown in Fig. 6.
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Figure 6: Error rate w.r.t. bit-sending loop time (bit rate).

From Fig. 6, we observe that the error rate increases as the bit
rate increases. When the bit-sending loop time is not less than 10
ms, the error rate is less than 0.4% on platform B and less than
0.7% on platform C. When the loop time is 5 ms, the error rate
reaches 4.6% and 3.1% on platforms B and C. On the other hand, the
error rate on platform A is always higher, but still reasonable (less

than 2%) if the loop time is not less than 15 ms. The error rate on
platform A reaches 6.1% at the fastest 100 bps. We have manually
checked the RAPL readings on platform A, and found that when
bit ‘1’ is transmitted, the power consumption occasionally climbs
slowly up to the level representing ‘1’. When it occurs, the power
consumption trace has a recognizable pattern. Thus, if we take
into account this slow rise pattern, we can reduce the error rate on
platform A to nearly 0 when the loop time is not less than 20 ms.

Notice that platform C is a non-uniform memory access (NUMA)
system. There are two CPU sockets on this platform, on each of
which there is a CPU installed, and to each CPU, there is a set of
DRAM modules attached. The operating system unitedly manages
these CPUs and their associated memory. The mode of this NUMA
is non-interleaved, which means that the memory allocations of
a process will be attempted on its local memory first. The power
domains of both CPUs can be seen under the powercap. We run
the sender on one CPU and the receiver on the other, namely, a
cross-CPU covert channel is actually evaluated on platform C. In
contrast to another cross-CPU covert channel DRAMA [50], our
RAPL-based one has a critical advantage that is no need for having
DRAM shared between the sender and receiver. In the cases of
non-interleaved NUMA systems like platform C, it is in effect hard
to establish DRAM sharing between the sender and receiver that
run on different CPUs, as the local memory needs to be exhausted
first for allocations on other NUMA nodes.

Table 3: Error rate change under disturbance.

Platform A Platform B Platform C
1.3% −→ 0.4% 0.1% −→ 0.7% 0.0% −→ 0.8%

In addition, we run another container along with the sender, in
which a program continuously accesses an array of size 512 MB.
This will create a large amount of DRAM traffic to disturb our covert
channel. In such a situation, we evaluate the error rate of the covert
channel at 28.6 bps (i.e., the bit-sending loop time is 30 ms). The
results are shown in Tab. 3. Surprisingly, the error rate on platform
A becomes 0.4%, andwe find that the slow rise patternwhen sending
‘1’ has become rarer, which explains the improvement. The very
small error rate changes on platforms B and C further show the
robustness of this covert channel. Because the entire LLC will suffer
constant eviction in this case, we believe the cache-based covert
channels may be degraded significantly. Moreover, in this situation,
the method proposed in [48] may hardly work (especially if we only
have one logical processor on the sender side), since it uses eviction
to increase the DRAM power consumption for transmitting ‘1’ but
eviction now can regularly occur.

4 INFERRINGWEBSITE VISITS
The second study we have conducted is to leverage RAPL to infer
which websites have been visited. In general, website visit history
is a piece of extremely private information, and it may directly
or indirectly disclose the political views, financial status, medical
condition, and other sensitive secrecy of a user. Although many
mechanisms/tools have been developed to protect such privacy,
it has been shown that an attacker can still use various website
fingerprinting techniques to track the browsed websites [2, 3, 14,



20, 27–29, 35, 37, 38, 49, 58, 65]. In this section, we demonstrate
that RAPL can be exploited for effective website fingerprinting.

4.1 Threat Model
An attacker intends to track the website visits of a victim for some
malicious purpose.We assume the victimwill visit popular websites,
and thus the attacker can profile many potential ones according to
a particular list (e.g., Alexa top sites) to build a model. Note that the
term “website” is abused in the literature on website fingerprinting,
where, instead of the whole site, it is used to refer to specific web-
pages. We follow this misnomer tradition in this section, and use
website and webpage interchangeably when the context is clear.
We focus on the homepages of websites, which users usually visit
at first.

We assume that the attacker has access to the RAPL readings,
which can be achieved by a piece of malware via the methods
mentioned in Section 2 (e.g., the diagnostic system call under Mac
OS X). How to place the malware on the computer of the victim is
out of scope, but, as presumed in the previous work, the attacker
may carry it out via malicious apps [14, 27, 35] and other possible
approaches include social engineering, USB interface, and physical
access. Other than the availability of access to RAPL, we do not
assume any other vulnerabilities.

A victim typically uses a personal computer (such as a desk-
top/workstation/laptop) for web browsing. The victim may use one
of the most popular browsers such as Chrome or Safari to surf the
Internet. If privacy is of the utmost consideration, the victim may
choose to leverage the Tor browser for enhancing the protection.
Because access to RAPL without privilege is assumed, the operating
system in use may be either Linux or Mac OS, and the CPU should
be an Intel processor that is not out-of-date (e.g., we consider pre-
Sandy Bridge processors as obsolete). We do not assume any other
platform configurations.

4.2 Website Fingerprinting through RAPL
When opening a website in a browser, the HTML file will be re-
trieved from the server, and the browser parses the HTML file for
building a document object model (DOM) tree in the memory. The
cascading style sheets (CSS) and JavaScript (JS) scripts will also
be retrieved, and they typically augment and modify the DOM
tree for aesthetic and interactive purposes. Additionally, other web
elements like images will be fetched and handled (e.g., image de-
coding). As the contents necessary for displaying the page become
available, the webpage layout will be solved and drawn on the
screen. Therefore, rendering a webpage involves the use of various
computational resources, e.g., CPU, GPU, and memory.

Since different webpages have different designs, rendering them
can lead to different patterns on using the computational resources,
which implies different power consumption patterns of the corre-
sponding computational resources. As rendering a webpage usually
takes hundreds to thousands of milliseconds, we expect that the
power consumption patterns can be reflected in the RAPL readings
of different power domains that are fine-grained and updated about
every 1 ms (see Section 2). In other words, we anticipate to use
RAPL readings for fingerprinting websites.

To validate our anticipation, we periodically sample each RAPL
power domain when opening three different websites and derive
their power traces for comparison. (Recall that the RAPL readings
represent the consumed energy, so we take the difference of con-
secutive samples to obtain the sense of power consumption.) For a
better comparison, we choose the websites to be Google, Bing, and
Baidu, that are the three most popular search engines in the world
according to Alexa top sites. Their webpages are among very sim-
ply designed modern ones, and thus help us test the granularity of
RAPL-based fingerprinting. Moreover, their webpages have similar
looks, and hence allow us to check how good the distinguishability
is.

Fig. 7 illustrates the derived power traces of opening these three
websites in the Chrome browser (version 83.0.4103.116) on a lap-
top equipped with a Core i7-8550U processor. The laptop uses the
Ubuntu Linux 20.04 operating system. We read RAPL through the
powercap interface in each power domain every 500 𝜇s for 10 sec-
onds when opening a website, and the traces of power consumption
are derived following the lines 6–8 in Fig. 5. For each of the three
websites, two measurements are taken – the first one is captured
when the laptop is next to the access point and the Wi-Fi signal
strength is very good, whereas the second one is measured when
the laptop is placed several meters away from the access point and
the Wi-Fi signal is not very strong.

Although similarly designed, the webpages of these three web-
sites have utterly different HTML documents, CSS style sheets, JS
scripts, images, and other plug-in objects. Therefore, when they are
rendered, different CPU loads are generated and the power traces in
the PP0 domain should be different. From Fig. 7, we can observe that
the traces in the PP0 domain indeed have noticeable distinctions
for different websites, although the traces when opening the same
website are only similar but not identical. For instance, in terms of
Google, the page rendering is apparent in the initial 3000 samples,
but rendering the other two spans more than 4000 samples. More-
over, a large portion of the first 4000 samples when opening Bing
has values higher than 10000, because Bing has a more complicated
background to process and thus more CPU power will be consumed
during rendering.

Modern popular browsers such as Chrome and Safari use GPUs
not only for displaying but also for helping webpage rendering.
Typically, there is an integrated GPU in desktop/mobile CPUs. If
there is no discrete GPU, the integrated one will take exclusive
charge of the activities using GPU. In this case, the appearance of
a webpage affects the power consumption of the integrated GPU,
which can be derived from the RAPL readings in the PP1 domain.
The laptop we use does not have a discrete GPU, so we expect to
distinguish websites by comparing the derived power traces in its
PP1 domain. Fig. 7 illustrates that there exist certain patterns in the
traces which can consistently differentiate these three websites. For
example, similar to that in the case of PP0 power traces, it seems
that Google always induces the shortest power surges among these
three websites when opened. Notice that if a discrete GPU is used,
the derived power trace in the PP1 domain will constantly be 0,
namely it cannot be leveraged for website fingerprinting.

Rendering a modern webpage usually takes several (or even hun-
dreds of) megabytes of memory for objects like the DOM tree, JS
runtime variables, and images, on which the rendering operations
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Figure 7: The RAPL power traces for the three most popular search engine websites.

are performed and create a large amount of memory traffic. The
rendering-dependent memory traffic thus indicates the possibil-
ity of using the power traces in the DRAM domain for website
fingerprinting. In terms of the three search engine websites, we
can confirm that there are discernible patterns in their DRAM do-
main power traces shown in Fig. 7. Note that there is an interesting

phenomenon that spikes emerge in the traces in all of the RAPL
domains nearly every 1000 samples (i.e., 500 ms) after the initial ren-
dering, but the spikes are the most noticeable in the DRAM domain
traces. We find that this phenomenon is caused by the blinking
text cursor in the input box on the search page. Each time when
the cursor blinks, the displayed raw bitmap will be regenerated



and redrawn on the screen. Therefore, the power consumption
in each domain will rise correspondingly. This demonstrates that
our RAPL-based fingerprinting has a resolution sufficiently high to
distinguish common activities on a webpage.

As the PP0 and PP1 domains are both sub-domains of the package
domain, the superposition of the power traces in the PP0 and PP1
domains approximates the trace in the package domain, which
means that the package domain trace embraces the discernible
patterns in the power consumption of CPU core and GPU when
rendering a webpage4. (We find that the sum of the readings from
PP0 and PP1 is always the dominant portion of the RAPL value
in the package domain.) Hence, the power trace in the package
domain can also fingerprint the websites, which can be verified
via comparing the traces of these three search engine websites in
Fig. 7.

Given the above discussion, we can see that the derived power
trace in any RAPL domain can be used for our fingerprinting pur-
pose. However, there are still several questions that need to be
explored. Can we leverage the power traces to achieve acceptable
fingerprinting performance? Which domain’s traces can be better
used for fingerprinting? If the technique performs decently in the
regular network scenario, can we also achieve effective fingerprint-
ing in the anonymity network scenario? In the following, we use
evaluations to answer these questions.

4.3 Evaluation Setup
In the following evaluations, we use two computer systems, which
are listed in Table 4. (Note that these two computer systems are
not geographically close, as they are located in different cities.) On
the XPS laptop, we use the powercap interface to access RAPL, and
on the Mac mini desktop, we use the diagCall64() system call
to access RAPL. Under the regular network scenario, we use the
Chrome browser on the XPS (version 83.0.4103.116), and we use
both Chrome and Safari on the Mac desktop (version 84.0.4147.89
and 13.0.2 respectively). In the anonymity network scenario, we
use the latest Tor on both computer systems (version 9.5.3).

Table 4: Computer systems used for evaluations on RAPL-
based website fingerprinting.

Computer CPU Memory OS
Dell XPS 13 Core i7-8550U 2×8 GB LPDDR3-2133 Ubuntu 20.04

Apple Mac mini Core i5-8500B 8 GB DDR4-2666 macOS Catalina 10.15.3

Given the Alexa top 50 websites, we select 37 of them by throw-
ing away the websites that are adult, subsites (e.g., login pages), and
country-dedicated (e.g., Google and Google UK). The websites are
list in Table 10 in Appendix. We capture 100 traces in each RAPL
domain for each of these 37 websites on the two computers. Each
trace lasts for 15 s, and we read RAPL every 500 𝜇s, so there are
30,000 samples in each trace.

Note that the evaluations in this section consider only the closed-
world setting against the selected 37 websites. To perform website

4Although the DRAM domain is also treated as a sub-domain of the package domain
under the powercap interface, we find that the energy consumption reported in the
package domain does not contain the DRAM portion. Thus, we treat the DRAM domain
as an independent one of the package domain.

fingerprinting in open-world settings, a proper one-class classifica-
tion method is needed for accurate and robust novelty detection.
We leave this investigation to our future work.

4.4 Comparison between RAPL Domains
Because the RAPL readings in all of the four domains can be used
for website fingerprinting (if the integrated GPU is not used, the
readings in the PP1 domain cannot be used for this), we want to
find out whether they have equivalent distinguishability or not.
To this end, we use the 𝑘-Nearest Neighbors (𝑘NN) classification
method, which is based on the concept of feature similarity. Since
we focus on checking how similar the traces in a domain are for
the same website and how distant they are for different websites,
we measure how accurate the 𝑘NN models can achieve only under
the regular network circumstances.

We choose𝑘 to be 5 and use themost common Euclidean distance
tomeasure the similarity. Eachmodel is built from the aligned power
traces corresponding to rendering the webpages of the 37 websites
in each RAPL power domain. We carry out a 5-fold cross validation
to estimate the accuracy of the models. The results in terms of the
mean accuracy and 95% confidence interval are reported in Table 5.

Table 5: 𝑘NN classification accuracy estimates using 5-fold
cross validation – mean and 95% confidence interval.

Case Package PP0 PP1 DRAM
XPS-Chrome 0.84 (± 0.06) 0.28 (± 0.03) 0.85 (± 0.05) 0.64 (± 0.04)
Mac-Chrome 0.73 (± 0.05) 0.69 (± 0.03) 0.11 (± 0.02) 0.20 (± 0.03)
Mac-Safari 0.91 (± 0.06) 0.90 (± 0.06) 0.18 (± 0.04) 0.56 (± 0.06)

From the results, we can observe that the websites can be well
distinguished according to their power traces derived in the package
domain. However, the model based on the traces in the PP0 domain
on the XPS has a relatively low classification accuracy, while the
model based on its PP1 domain traces can classify the websites
much more accurately. Interestingly, it is exactly the opposite in
the cases of the Mac as shown by the results. This phenomenon
needs a further investigation, and is left for our future research.
Nevertheless, as the superposition of the power traces in the PP0
and PP1 domains approximates the trace in the package domain, we
may directly choose the package domain for our purpose without
considering the PP0 and PP1 domains separately, given the results
showing positive impacts of the combination.

The power traces in the DRAM domain seem less effective for
distinguishing different websites according to their resemblance
measured in distance. However, as they are independent from the
traces derived in the other three domains, they can be combined
with the traces in other domains to improve the performance. For
example, if we add the derived power trace in the DRAM domain
to the corresponding trace in the package domain, the model built
from the new traces can increase the accuracy by about 2%.

Note that given any trace, if we randomly guess which of the 37
websites it corresponds to, the accuracy should be 0.027 (i.e., 1

/
37).

While any 𝑘NNmodel based on the power traces in a RAPL domain
has much better accuracy than that, we can see that the model
based on the traces in the package domain outperforms others
considering both stability and accuracy. It indicates that the power



traces in the package domain have a better distinguishability for
fingerprinting websites compared with others.

4.5 Evaluation using DNN
Although using 𝑘NN directly on the aligned power traces is already
much better than random guessing, the accuracy should be able to
be further improved if any proper feature engineering is applied.
However, feature crafting usually involves heavy manual labor.
To avoid such labor, we choose to leverage deep neural network
(DNN) to perform automatic feature learning from the raw data [52].
Given the comparison results presented above, we decide to use
only the power traces derived in the package domain as raw data
in this evaluation, since they show more effectiveness than others
for website fingerprinting.

In terms of the DNN model, we choose to use Convolutional
Neural Network (CNN) over Recurrent Neural Network (RNN),
even though our power traces belong to time series data. One of
the primary reasons is that RNN is designed mainly for time series
prediction, and the other reason is that RNN usually suffers from the
vanishing gradient problem more severely when training on long
time series [7]. Specifically, we use the residual network (ResNet)
architecture that is described in [67] for our purpose.

We notice that if the time series traces are too long, the classifi-
cation performance degrades significantly. Due to this reason, we
remove the repeated values in each captured RAPL trace before
deriving its power trace. Recall that energy status in a RAPL domain
is updated roughly every 1 ms, so about half of the samples will be
removed if the sampling period is 500 𝜇s. (As energy consumption
reported by RAPL increases monotonically, this removal does not
loss any information.) Moreover, we find that most of the essential
information for fingerprinting in a power trace is actually contained
in the part corresponding to the first 5∼ 6 s when opening a website.
Thus, we decide to use only the first 7000 samples in each power
trace, which roughly corresponds to the first 7 s. (After removing
the repeated values, the time between samples is about 1 ms.)

Table 6: Fingerprinting accuracy using ResNet in the regular
network scenario. Testingmodels against traces correspond-
ing to the same and different platforms/browsers.

Testing Traces
XPS-Chrome Mac-Chrome Mac-Safari

M
od

el XPS-Chrome 0.99 (± 0.01) 0.04 (± 0.02) 0.05 (± 0.02)
Mac-Chrome 0.07 (± 0.01) 0.96 (± 0.02) 0.05 (± 0.01)
Mac-Safari 0.04 (± 0.02) 0.06 (± 0.02) 0.95 (± 0.01)

The evaluation results after replacing 𝑘NN with ResNet models
are given by the entries on the main diagonal of Table 6. (Some
confusion matrix examples are also demonstrated in Appendix.) As
we can observe from the results, if the training and testing traces
correspond to the same platform and browser, the ResNet model can
significantly improve the classification (i.e., fingerprinting) accuracy
(e.g., in the case of using Chrome on Mac, the accuracy is only 73%
under 𝑘NN but becomes 96% under ResNet). However, the entries
not on the main diagonal in Table 6 demonstrate that this RAPL-
based website fingerprinting technique perform almost similar to
random guessing across platforms and/or browsers, namely it is
browser- and platform-sensitive.

Table 7: The average and lowest precision and recall when
fingerprinting 740 traces in the regular network scenario.

Precision Recall
Mean Min. Mean Min.

Ca
se

XPS-Chrome 98.8% 90.9% 98.8% 90.0%
Mac-Chrome 97.3% 86.9% 97.1% 75.0%
Mac-Safari 95.9% 80.0% 95.4% 75.0%

Moreover, Table 7 shows the average and lowest precision and
recall achieved in each case. With respect to a website𝑤 , we have

precision𝑤 =
TP𝑤

TP𝑤 + FP𝑤
and recall𝑤 =

TP𝑤
TP𝑤 + FN𝑤

,

where TP𝑤 refers to true positives for𝑤 (i.e., a trace corresponding
to 𝑤 is classified as “belonging to 𝑤”), and FP𝑤 and FN𝑤 refer to
false positives (i.e., a trace not corresponding to𝑤 is classified as
“belonging to 𝑤”) and false negatives (i.e., a trace corresponding
to 𝑤 is classified as “not belonging to 𝑤”). Precision reflects how
much we can trust that the identified visits to a website are indeed
made by a user, and recall indicates how much portion of the visits
to a website made by a user can be correctly identified using this
fingerprinting technique. From the results, we can see that both
precision and recall are sufficiently high even in the worst case.

4.6 Evaluation on Tor
In addition to the evaluations of the RAPL-based website finger-
printing technique in the normal network scenario against com-
monly used browsers like Chrome and Safari, we further evaluate
the technique under the anonymity network scenario. Specifically,
we focus on Tor (The Onion Router) that encrypts network traffic
and relays it between users and website servers anonymously.

In the case of Tor, using deep neural network for classification is
more essential, because Tor introduces more intricacies. First, due
to the unpredictable latency incurred by Tor routers and its overlay
network, the power traces may be distorted in time. Second, due to
the encryption and decryption operations used in each packet, the
power traces are more noisy. Third, due to the changeable exit node,
websites adapting to geolocations may use different languages (e.g.,
Google) or provide different contents (e.g., Bing), which can affect
the consistency of the power traces. Neural networks, the convolu-
tional ones in particular, should be good at inferring dependencies
in time series data even in the presence of such intricacies [55].

Table 8: Fingerprinting accuracy using 𝑘NN & ResNet in the
Tor network scenario – mean and 95% confidence interval.

Case 𝑘NN ResNet
XPS-Tor 0.41 (± 0.12) 0.81 (± 0.02)
Mac-Tor 0.34 (± 0.07) 0.78 (± 0.03)

Guided by the results of previous evaluations, we just use the
package domain power traces in this evaluation as well. For model
comparison, we also include the evaluation results using 𝑘NN. The
results are shown in Table 8. From the results, we can observe that
simply using 𝑘NN cannot achieve a decent performance (although
still much better than random guessing). By contrast, using DNN
can achieve an acceptable fingerprinting performance against Tor –
81% and 78% on tested XPS laptop and Mac desktop respectively.



Table 9: The average and lowest precision and recall when
fingerprinting 740 traces in the Tor network scenario.

Precision Recall
Mean Min. Mean Min.

Ca
se XPS-Tor 82.0% 47.8% 81.1% 55.0%

Mac-Tor 79.6% 45.5% 78.4% 35.0%

We also list the average and lowest precision and recall achieved
in the Tor network scenario in Table 9. We can observe that both
precision and recall are not as high as the results corresponding
to the regular network scenario as shown in Table 7. Nevertheless,
they are still acceptable.

5 COUNTERMEASURES
To thwart the presented attacks and any other potential ones ex-
ploiting RAPL-induced side channels, the most straightforward and
effective approach is to keep the RAPL energy status from being
accessed by an unprivileged user.

In terms of the powercap interface under Linux, we expect a
patch similar to that for the pagemap. Specifically, only users with
the CAP_SYS_ADMIN capability can read the energy_uj files under the
powercap interface correctly. If the user does not have CAP_SYS_ADMIN,
the readings will be zeroed out.

In terms of the diagCall64() system call of Mac OS, we may
limit the access to its power statistics mode. There is a boot argu-
ment diag that controls the access to some modes of this system
call5, where the power statistics mode is not one of them. (Before
kernel version 2422.1.72, the diag argument controls the entire
system call as a whole instead of separate modes.) We argue that
the access to the power statistics mode should also be controlled
by the diag argument, which is off by default.

In the cases of PaaS/IaaS clouds, many of their providers have
proactively removed the exposure of the powercap interface to the
tenants. However, we have found that an attacker-controlled VM
may still be able to retrieve RAPL energy status information by
accessing related MSRs on some IaaS clouds. To restrict access to
RAPLMSRs, the corresponding bits in the read bitmap for lowMSRs
should be set and the accesses will need to be handled properly at
VM exits.

To specifically mitigate the possible RAPL-based website finger-
printing attacks, we may borrow the “fuzzy time” idea, that has
been used for building trusted browsers against timing attacks [33],
to form a “fuzzy energy” method. A browser can randomly perform
some energy-demanding computation in the background when
rendering a webpage, which will introduce overwhelming energy
consumption noise into the RAPL power domains. It will likely
become much harder for an attacker to identify websites through
the polluted RAPL fingerprints.

5The boot argument diag is parsed during system initialization to set a kernel variable
dgWork.dgFlags, whose value is checked against a constant enaDiagSCS (that is
0x00000008) at the beginning of the diagCall64() to set a flag for controlling the
access to some modes. There are two ways to set Mac OS boot arguments, which are
via the nvram command and through the boot property list file.

6 RELATEDWORK
In this section, we briefly discuss some work closely related to this
paper. The focuses are mainly on similar covert channel and website
fingerprinting attacks.

6.1 Covert Channel Attacks
The confinement problem was formulated by Lampson in 1973 [34],
which made the first mention of possible data exfiltration via covert
channels. Since then, extensive research has been conducted on
this topic. Roughly speaking, covert channels can be classified into
logical and physical ones. Logical covert channels usually manip-
ulate the states in some shared hardware component to encode
and transfer information. While the majority of these logical covert
channels are built on top of caches [12, 26, 39, 44, 45, 70], many
other hardware components have also been exploited to build such
channels, including execution ports [8, 66], branch predictor [6, 22],
memory disambiguator [60], memory bus [69], DRAM bank row
buffer [50], AES accelerator [22], and hardware random number
generator [5]. Fundamentally, logical covert channels are based on
resource contention, and can be mitigated using logical resource
isolation [15, 66] or randomization [68].

On the other hand, physical covert channels are essentially con-
structed from certain physical side effects of computation. Although
the presented work in this paper does not explicitly interact with
the physical environment, it is the DRAM power consumption that
becomes fundamentally exploited, and hence it is more likely to be
categorized as a physical covert channel. Similarly, we categorize
the covert channel proposed in [31] as a physical one, although
it just measures the performance fluctuation due to power man-
agement. Likewise, the physical effects of voltage drop as well as
thermal rise on the frequency of ring oscillators have been exploited
to enable covert channel communication through shared FPGAs
on clouds [11, 62], and we treat them as physical covert channels
as well. Different from logical ones, physical covert channels are
not based on shared resource contentions but on the changes made
to the physical quantities, so the countermeasures against logical
ones cannot defend against them.

Prior to our work on covert channel, it is mentioned in [9] that
RAPL may be exploited to construct covert channels. Later in [48],
cache eviction is leveraged to raise the DRAM power consumption
for encoding information. However, the receiver may be consider-
ably disturbed by another process accessing a large array in mistake
for its collusive sender. By contrast, the covert channel built in this
paper is based on our observation that non-temporal memory ac-
cesses can induce distinguishable DRAM power consumption from
that caused by cache eviction or flushing. In other words, our covert
channel is more robust.

There are some other physical covert channels that exfiltrate
data between isolated parties on the same platform. For example,
heat issued during computation has been used to form a cross-core
thermal covert channel [1, 42]. Although many physical covert
channels including ours target the same platform scenario, most of
them are used to achieve unauthorized data transfer across air gaps,
where various physical side effects are exploited, such as electro-
magnetic [16, 57, 72], acoustic [18], thermal [17], and optical [19].



6.2 Website Fingerprinting Attacks
There are many website fingerprinting attacks running the gamut
from methodology to technology. In general, an attacker may either
try to statistically analyze the network traffic of a victim to infer the
visited websites or exploit certain local side-channel information
to acquire this sensitive information.

Website fingerprinting via network traffic analysis is based on
the observation that some network-level characteristics such as
packet timings and packet lengths may preserve and can be ex-
ploited even in the encrypted communication situations [21]. With
properly designed classifiers, many proposed attacks can achieve
very accurate fingerprinting [2, 20, 28, 29, 37, 40, 49].

Other than network traffic analysis, an attacker may exploit local
side-channel information to track the browsed webpages. The pre-
sented technique in this paper belongs to this category. The types
of the exploited side-channel information range from logic ones
like memory footprints to physical ones like power consumption.

To take logical fingerprints, hardware modification is not re-
quired, and it only needs that a piece of attacker-controlled code
(e.g., malware or JavaScript) runs on the target machine. Not only
are logical fingerprints much easier to take than their physical coun-
terparts, but they are also in many forms. In [27], it has been shown
that the memory footprints of a browser can be used to reveal the
rendered webpages. In [35] and [46], GPU memory dumps and uti-
lization patterns are used to fingerprint websites. In [59], Android
data usage statistics is leveraged to achieve website fingerprinting
on mobile phones, while in [32], storage usage statistics is used to
fingerprint websites browsed using the Chrome browser. In [65],
it shows that the identities of visited websites can be inferred by
exploiting shared event loops in Chrome. In [14], hardware perfor-
mance counters are sampled through the Linux perf interface and
their statistical information is used to fingerprint websites. (How-
ever, note that the perf_event_paranoid sysctl parameter controls
the use of the perf interface by unprivileged users, whose default
value has already disallowed unprivileged users from accessing
the perf_event_open() system call.) In addition, in [47] and [58],
website fingerprinting techniques using cache-based side-channel
information have been investigated.

Compared to logical ones, physical fingerprints of websites are
usually harder to take. This is traditionally more evident in terms
of power-based website fingerprinting techniques, as either AC
power outlet [3], USB charging station [71], or battery [38] needs
to be instrumented and/or replaced. Yet, there has been some work
attempting to remove the need for special hardware but estimate
the power traces in software for website fingerprinting on mobile
devices [51]. Similarly, our RAPL-based technique fundamentally
leverages the power consumption side-channel information and is
purely in software. In addition, some other physical side channels
have been exploited to identify websites such as acoustic [10] and
electromagnetic [43].

7 CONCLUSION
In this paper, we have conducted two studies on how to exploit
RAPL-induced side channels to mount realistic attacks. In the first

study, we have constructed an RAPL-based covert channel via ma-
nipulating the DRAM power consumption with a single AVX in-
struction, and in the second study, we have examined the poten-
tial of exploiting RAPL for website fingerprinting. These studies
serve as new examples of the fact that useful system designs with
security-obliviousness commonly exist. In addition, we have dis-
cussed certain possible countermeasures. In the future, we plan to
investigate other possible security problems caused by RAPL. For
instance, we will inspect if we can leverage RAPL to help find mini-
mal eviction sets, as when eviction happens constantly, more power
consumption should be observed in the DRAM domain than the
normal situation, which can serve as an eviction indicator. Another
example is to generalize the RAPL-based website fingerprinting
technique to fingerprint videos and applications.
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8 APPENDIX
The list of the 37 websites used in this paper is given in Table 10.
The number in the parentheses after each website is used to identify
this website in the two confusion matrix examples given in Table 11
and Table 12.

Table 10: The 37 websites used in this paper.

360.cn (10) Aliexpress.com (8) Alipay.com (31) Amazon.com (21)
Baidu.com (14) Bing.com (9) Blogger.com (24) China.com.cn (25)
Csdn.net (20) Ebay.com (23) Facebook.com (3) Google.com (37)
Instagram.com (4) Jd.com (27) Live.com (34) Microsoft.com (26)
Myshopify.com (6) Naver.com (7) Netflix.com (19) Office.com (28)
Okezone.com (22) Qq.com (5) Reddit.com (18) Sina.com.cn (33)
Sohu.com (17) Taobao.com (11) Tianya.cn (12) Tmall.com (32)
Tribunnews.com (29) Twitch.tv (35) Vk.com (30) Weibo.com (15)
Wikipedia.org (2) Xinhuanet.com (1) Yahoo.com (16) Youtube.com (36)
Zoom.us (13)
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Figure 8: Fingerprinting accuracy in different closed-world
scenarios where the number of monitored websites varies.

In addition, Fig. 8 shows the fingerprinting accuracy in different
closed-world scenarios, where we order the websites in Table 10
alphabetically and select the first 10, 20, 30, and all of them to
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construct the corresponding groups. For each closed-world scenario
and the combination of computer and browser, we train a model
and perform fingerprinting on a set of test traces. From Fig. 8, we

can see that the accuracy does not change much when the size of
the closed-world group changes.

Table 11: Confusion matrix in terms of classifying 740 RAPL power traces (each of the 37 websites contributes 20 traces) in
the Mac-Safari case.

Predicted
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Tr
ue

1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 18 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 1 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 19 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0
37 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

Table 12: Confusion matrix in terms of classifying 740 RAPL power traces (each of the 37 websites contributes 20 traces) in
the Dell-Tor case.

Predicted
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Tr
ue

1 17 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2 0 17 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 17 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 17 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 16 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 13 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 2 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 1 0 2 0 0 0 0 0 2 11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0
18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 13 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 12 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0
20 1 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 1 0 13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0
23 0 0 0 1 0 0 0 1 1 0 0 2 0 0 0 0 0 1 0 1 0 0 12 0 0 0 0 1 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 16 0 0 0 1 0 0 0 0 0 0 0 0 0
25 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 16 0 0 1 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 13 0 0 0 1 2 0 0 0 0 0 0
27 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 14 0 1 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 17 0 0 0 0 0 0 0
31 1 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2 11 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 17 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 18 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 17 0 0
36 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19
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